Assessment of White Pine Blister Rust Resistant Plantings in Quetico Provincial Park: Summary Report

By Amy Adair December 2017

Final Draft

Quetico Provincial Park acknowledges that the surveys summarized in this report were carried out on the traditional lands of the Anishinaabe people of Treaty Three.

> Staffing for this project was provided in part by the Quetico Foundation

White pine blister rust (*Cronartium ribicola*) is a pathogenic fungi that has caused significant losses of white pine throughout North America. In the early 1990s, over 4000 white pine seedlings that had been selected and bred for genetic resistance were planted in Quetico Provincial Park with the goal of enhancing natural regeneration of white pine. In 2016 and 2017 (23-26 years after planting) the majority of the planting sites (some could not be found) were revisited to assess the severity of blister rust infection. A control plot that was planted in the late 1990s/early 2000s, containing non-resistant white pine was also established and monitored for comparison purposes.

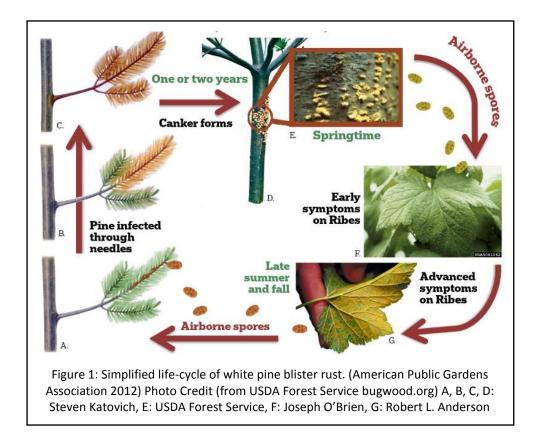
A total of 317 non-resistant trees (control) in 12 plots and 1034 resistant trees in 41 plots were surveyed. Health of the tree was determined by visually assessing the tree using a Vigour Class of 1-3 where 1 is a dead tree and 3 is a tree with no health problems. Level of blister rust infection was also determined using a visual assessment and was assigned a Severity Class of 1-4 where 1 is a tree that is dead from blister rust and 4 is a tree without blister rust.

Using simple Bayesian probabilities, it was found that trees in control plots had a 33.3% chance of dying due to blister rust infection while trees in resistant plots had a 16.4% chance of dying due to blister rust. The effect of free to grow status and the presence of *ribes* spp. was unclear. The observed rate of blister rust infection might also be influenced by stand age as the control plot was approximately 10 years younger than the resistant stands.

In future years, it is recommended that additional control plots are monitored to provide a more robust statistical comparison of blister rust infection between resistant and control trees. Controls plots, if possible, should more closely match the age and structure of the resistant plots monitored.

Table of Contents

Executive Summary2
Introduction4
Objectives7
Methods7
Plot Locations – finding them7
Data Collection
Statistical Analysis9
Results and Discussion9
Plot Characteristics9
WPBR Infection
Competition14
Discussion16
Future Research
References
Appendix 1. Plot Locations20
Appendix 2. White Pine Blister Rust Monitoring History23
Appendix 3. White Pine Blister Rust Monitoring Data Summary25



Introduction

White Pine Blister Rust (*Cronartium ribicola*) is a pathogenic rust fungus that infects all five needle pine species, including white pine (*Pinus strobus*) in Ontario. WPBR spreads through two types of spores which infect pine and currant (*Ribes spp.*) species alternately. Fungal spores (basidiospores) are released from infected currant plants and germinate on pine needles or twigs in late summer. These spores grow into the tree's tissues, creating orange pustules and white oozing blisters on the bark. After a period of 3-6 years these lesions burst and release orange spores (aeciospores) which are carried by wind to infect currants, where the cycle begins again (See Figure 1) (Natural Resources Canada 2015; Government of Ontario 2016).

White Pine Blister Rust (WPBR) was introduced to North America in the early 1900s through imports of infected white pine nursery stock from Europe that was intended for replanting. Early infection rates were very high, with as much as 90% of the best trees lost in forests in the eastern United States (Van Arsdel 2011). WPBR impacts continue to be high in areas that are climatically favourable to the dispersal of spores, such as the cool, moist regions of northern Minnesota, Wisconsin, Michigan and north-central Ontario (Van Arsdel 2011).

White pine loss is of significant concern among foresters and recreationalists alike. Five needled pines and particularly white pine have a high commercial value due to their fast growth rate and lumber quality (Lu and Derbowka 2009). Furthermore, white pine is a valuable component of forest

ecosystems and is an icon of Ontario's landscape (Lu and Derbowka 2009). In Quetico, visitors are drawn to the park by clear lakes surrounded by old growth pine forests (Ontario Parks 2017).

WPBR control efforts originally focused on eradication of currant species which proved difficult and costly due to their geographic spread, abundance and adaptability (Kinloch 2003). Genetic resistance, on the other hand, may provide a long term solution. In the 1960s, Cliff and Isabelle Ahlgren with the Quetico-Superior Wilderness Research Foundation, the USDA Forest Service, and the University of Minnesota, established a white pine plantation near Tofte, Minnesota. They planted 43176 white pine seedlings and after 11-13 years assessed the health, vigour and rate of infection of these trees. 888 trees (2.1% of the seedlings planted) were tagged as non-infected, which after a total of 40 years in the field made up 62.3% of the surviving trees. These selected trees are now the largest genetically diverse source of white pine trees with increased genetic resistance to WPBR in North America (David 2012).

In May of 1990, 1678 white pine seedlings from the Ahlgren's nursery were planted in 14 plots on Jean and Quetico Lake as well as in the Quetico Foundation Seed Orchard in Quetico Provincial Park. Plots were tended in 1991 and 1993 to reduce competition, and an additional 3089 seedlings were planted in 1992 (Pringle 1990; Pringle 1991; Pringle 1992; Pringle 1993). These plantings were a component of 'restorative management' intended to compliment forest succession and assist in preserving white pine stands in Quetico Park (Pringle 1989).

Following the early 1990s work, the white pine plots were left to mature and eventually almost forgotten. In 2005, Lila Sfilio, a masters student, visited four of the plots planted in 1990 and assessed the health of the stand and presence of WPBR. Between 9.1 and 56.3 % of each plot was found to be infected by blister rust though in some cases over 50% of the originally planted trees could not be found. In 2014 the MNRF Stewardship Youth Rangers surveyed six plots, including those visited by Sfilio. Of 600 trees originally planted in these plots, only 76 were found with 5.6% of these showing crown die off. The presence of WPBR does not appear to have been assessed.

To provide a more comprehensive evaluation of the health of Quetico's planted WPBR resistant white pine trees, in 2016 and 2017 the Quetico Foundation, in partnership with the Ministry of Natural Resources and Forestry, revisited the majority of the sites originally planted (see Table 1) as well as a control site (trees were not bred for genetic resistance). Champaigne-Klassen (2016) summarized the results from the Jean Lake plots, reporting an 18.8% probability that tree death in these plots was caused by blister rust. Allan (2017) compared results from the Seed Orchard to the control site. Though the resistant trees appeared to be slightly more healthy compared to the control, it was difficult to make a confident conclusion due to low sample size. This report will summarize the results of all surveys to date, using data from both Champaigne-Klassen's (2016) and Allan's (2017) reports as well as the most recent Quetico Lake surveys. See Appendix 2 for a full list of plot locations and work dates.

		# Trees Planted Total % Survival				Survey	ed in	
Plot	Lake	1990	1992	1993	2005*	2014*	2016	201
M1	Quetico	50		52				Y
M2	Quetico	72		79				Y
M3	Quetico	35		86				Y
M4	Quetico	36		86				Y
D1	Jean	50	8	78				
D2	Jean	50	5	82			Y	
D3	Jean	50	1	90			Y	
D4	Jean	50	2	90			Y	
D5	Jean	100		95			Y	
D6	Jean	25		80			Y	
D7	Jean	50		92			Ŷ	
D8	Jean	73		96			Ŷ	
W1	Quetico River	50	160	40	Ŷ	Ŷ	•	Y
W2	Quetico River	25	154	76	Y	Ŷ		Ŷ
W3	Quetico	25	104	40	,	Y		Ý
W4	Quetico	25		72		Ŷ		
W5	Quetico	25		28		Ŷ		Y
W6	Quetico	50		56	Y	Ŷ		Ý
W0 W7	Cirrus	429		95	I	I		I
W8	Quetico	42 <i>9</i> 155		98	Y			Y
wa W9	Cirrus	6		100	r			T
W10	Beaverhouse	50 5		78				
FL	French Lake	5	2200					
QFSO**	Stanton Bay	192	2300				V	
S1	Stanton Bay						Y	
S2	Stanton Bay						Y	
S3	Stanton Bay						Y	
S4	Stanton Bay						Y	
S5	Stanton Bay						Y	
S6	Stanton Bay						Y	
S7	Stanton Bay						Y	
S8	Stanton Bay						Y	
S9	Stanton Bay						Y	
S10	Stanton Bay						Y	
S11	Stanton Bay						Y	
S12	Stanton Bay						Y	
S13	Stanton Bay						Y	
S14	Stanton Bay						Y	
S15	Stanton Bay						Y	
S16	Stanton Bay						Y	
S17	Stanton Bay						Y	
S18	Stanton Bay						Y	
S19	Stanton Bay						Y	
S20	Stanton Bay						Y	
S21	Stanton Bay							
S22	Stanton Bay						Y	
S23	Stanton Bay						Y	
s24	Stanton Bay						Ŷ	
S25	Stanton Bay						Ŷ	

Table 1: WPBR work summary

C4	Control 957
C5	Control 957
C13	Control 957
C15	Control 957
C19	Control 957
C20	Control 957
C21	Control 957
C29	Control 957
C37	Control 957
C44	Control 957
C45	Control 957
C46	Control 957

* Monitoring did not follow 2016 protocol described in text.

** Quetico Foundation Seed Orchard (also referred to as Gillnet Lake). The Stanton Bay Plantation plots were established here.

Objectives

1. Determine if planted genetically resistant white pine in Quetico Provincial Park are showing improved survival in the presence of white pine blister rust compared to unmanaged stands.

2. Assess the influence of environmental factors (including the presence of currant species and competition) on tree health.

Methods

Plot Locations - finding them

Plot locations were estimated from aerial photography as well as hand drawn maps and comments included in the initial planting reports (Pringle 1990; Pringle 1992). Crews were able to locate 7 plots on Jean Lake (D2-D8) and 10 plots on Quetico Lake (M1-M4 and W1, W2, W3, W5, W6, and W8). 25 plots (24 of which were surveyed) were also established in the Quetico Foundation Seed Orchard (more recently known as the Stanton Bay Plantation) where the majority of seedlings were planted. Finally, a control plot (51 plots, 12 of which were surveyed) was established in a white pine plantation near the Stanton Bay access road that contained non-resistant trees approximately 10 years younger than the resistant plots. The control plot was located in the same ecosite as the Stanton Bay plots however a similar-aged stand was not available to survey. Figure 2 contains a map of the plot locations and more detailed maps are available in Appendix 1.

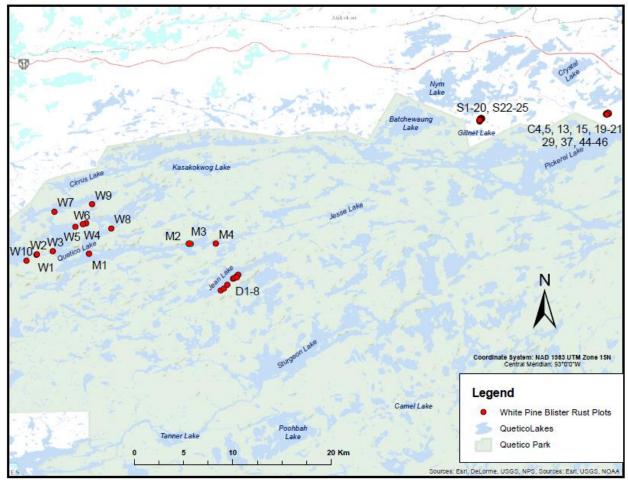


Figure 2: Location of the WPBR plots

Data Collection

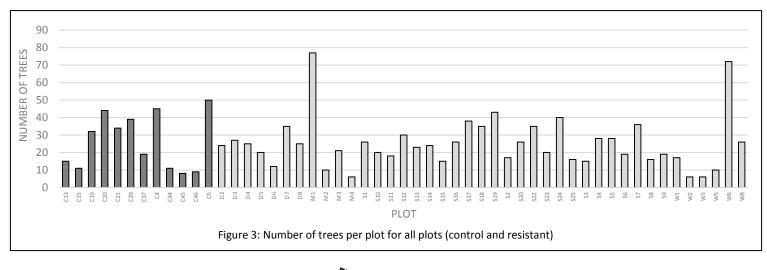
Plots were monitored using the *White Pine Resistance Survey: Protocol* developed in 2016 by Renee Perry (MNRF Area Forester) and Bridget Antze (MNRF Technician). Plot locations were recorded with a waypoint and then marked with flagging tape using an 11.28 m (400 m² plots) plot cord and each tree within the plot was uniquely numbered. The site history, ecosite, soil type, veg-type, moisture regime, average height, average crown closure, average diameter, tree competition, and shrub competition for each plot was recorded. For each tree the diameter at breast height (DBH), well-spaced status, free-to-grow status, tree competition, shrub competition, vigour (see Table 3), severity of WPBR infection (see Table 2), health issues, and dimensions of the WPBR wound if present, was recorded.

Table 3: Tree health (vigour) ranked from 1 (least healthy)

miected) to 4 (least if	ffected). Adapted fform David et al 2011.	to 5 (most healthy).
Severity Class*	Description	Vigour Class	Description
1	- dead from blister rust	1	- dead
2	- active canker	2	 compromised health
3	- inactive canker	3	 no apparent health issues
4	- no blister rust		

to 2 (most hoalthy)

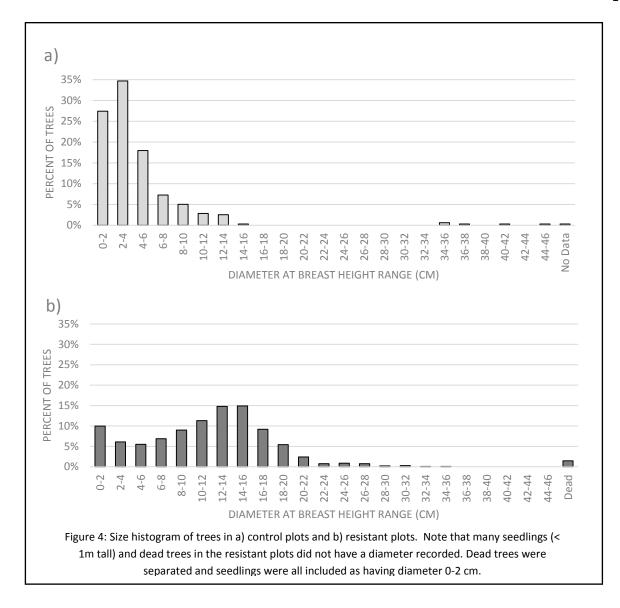
Table 2: Blister rust infection severity ranked from 1 (most infected) to 4 (least infected). Adapted from David et al 2011.


Statistical Analysis

Statistical analysis was performed in MS Excel, with a p-value of 0.05 was used as the cut-off for all determinations of statistical significance. Pairwise comparisons between number of dead and infected trees per plot, number of trees that were free to grow per plot, and tree diameter in control compared to resistant plots were made using a two-sample t-test for populations with equal variance if equality of variance was verified using an f-test statistic. Otherwise a t-test assuming unequal variance was used. Cohen's effect size, a measure of the strength of the interaction was also determined for each pairwise comparison. Simple Bayesian statistics, which is based on conditional probabilities, was also used to determine the probability of tree death caused by blister rust. A data summary is available in Appendix 3.

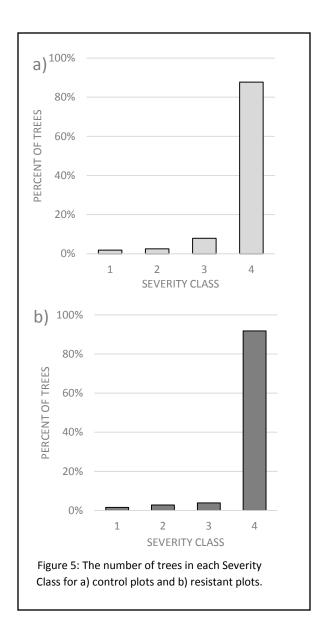
Results

Plot Characteristics

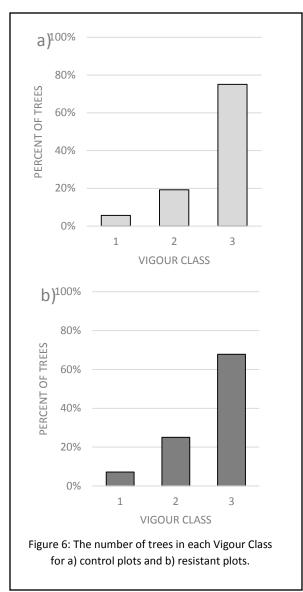

During 2016 and 2017, 317 non-resistant trees (control) in 12 plots and 1034 resistant trees in 41 plots were surveyed (Figure 3). No significant difference (p = 0.779, d = 0.081) was found between the average number of trees per plot in control (26.4 trees) compared to resistant (25.2 trees) plots. Average diameter of trees in control plots (4.5 cm) was significantly (p = 8.12E-73, d = 1.28) lower than the average tree diameter in resistant plots (11.6 cm) though note that the effect size between this comparison is high. The size distributions of tree diameter (Figure 4) illustrate this trend, with the majority of trees in control plots in the 0-6cm diameter classes and trees in the resistant plots showing a more even size distribution.

WPBR Infection

T-tests between the number of dead trees per plot and the number of trees infected by blister rust per plot between control and resistant plots did not return significant results (Table 4). The majority of trees in both plots were healthy and were not infected with WPBR (Figure 5 and 6). However, using Baye's theorem (Table 5 and Equation 1), which accounts for conditional probabilities, control plots were found to have a 33.3% probability of tree death caused by blister rust while resistant plots had a 16.4% probability of tree death caused by blister rust.


Table 4: comparison of the number of dead trees and the number of WPBR infected trees per plot. Values in brackets are averages, values in square brackets are the Cohen's effect size.

Dead Trees per plot	Control	Resistant	Infected Trees per plot	Control	Resistant
Control (1.5)	-		Control (3.25)	-	
Resistant (1.8)	0.622[0.176]	-	Resistant (2.02)	0.127[0.530]	-



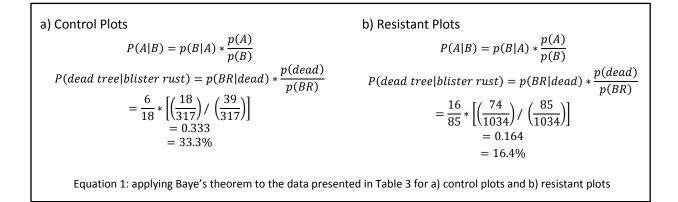
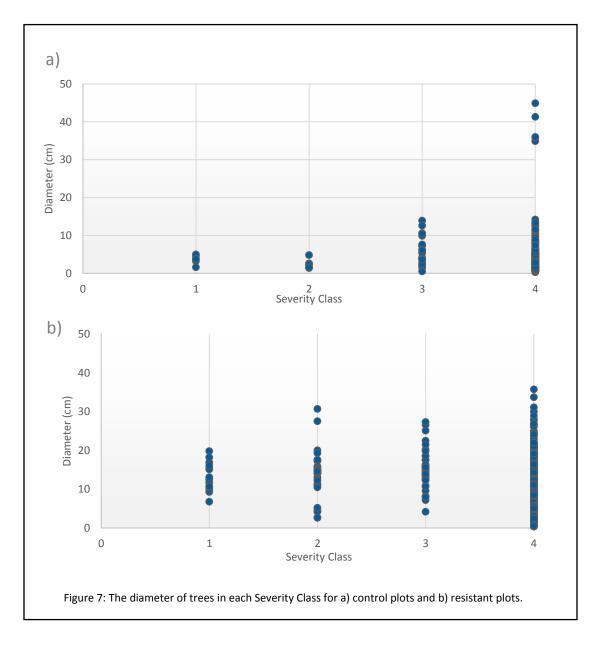
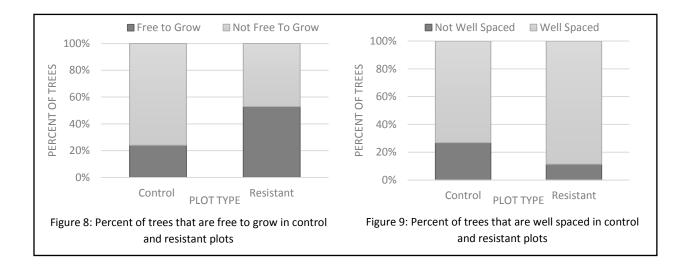


Table 5: comparison of tree numbers on control and resistant plots

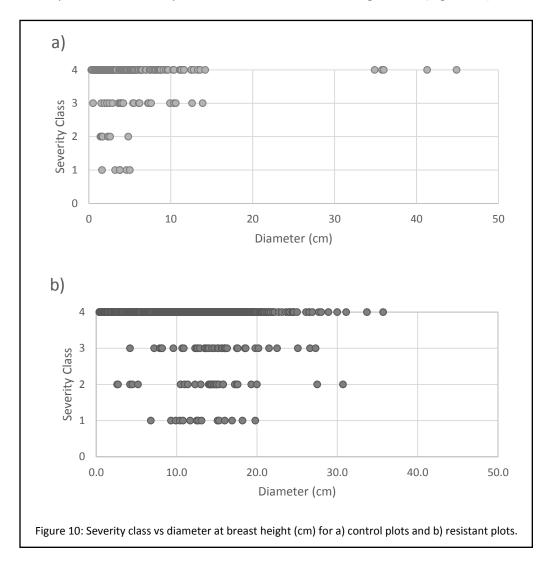
Number of	Control	Resistant Plots
Trees	317	1034
Dead Trees	18	74
Trees with Blister Rust	39	85
Trees Dead from Blister Rust	6	16



In control plots, all trees that were dead from blister rust (Severity Class 1) or had active cankers (Severity Class 2) had a diameter < 10cm. Resistant plots on the other hand have a large size distribution within all severity classes (Figure 7).



Competition


Control plots (mean = 6.2 trees per plot) had significantly (p = 0.009, d = 1.00) fewer trees per plot that were free to grow compared to resistant plots (mean = 13.1 trees per plot) (Figures 8). The number of trees that were well spaced per plot was not significantly different (Figures 9). Due to the difference in FTG status between control and resistant plots, the number of trees infected by WPBR that were free to grow was also compared. An average of 0.6 infected trees that were free to grow were found in control plots. This was not significantly different from the average of 1.3 infected, free to grow trees found in resistant plots.

The relationship between Severity Class and Diameter was not significant (Figure 10).

Discussion

Stand size distribution and structure varied between control and resistant plots. This is most likely due to overall stand age. The majority of white pine planting in north-western Ontario began in the mid-1990s (Perry, pers. com. November 2017), after Pringle and colleagues planted the resistant stands in Quetico. This made it difficult to establish control plots that were the same age as the resistant plots. Therefore, the majority of trees in the control plots are young seedlings and saplings, with a few very large overstory trees. Resistant plots on the other hand show an older, even-age distribution as a result of planting; the majority of trees are between 10 and 18 cm DBH.

The difference in age structure may influence the observed rate of WPBR infection. First of all, early monitoring of planted trees showed that many seedlings were lost in the first couple years after planting (Pringle 1993). If this trend continued, it is quite likely that the young saplings that died (naturally or from blister rust) were not present to be recorded during the 2016 and 2017 resistant plot studies. In the control plot on the other hand, saplings are still present. Furthermore, if WPBR infects young white pine trees more frequently than older trees, the loss of saplings in resistant plots would further skew the results. Results from this study do not show a relationship between tree size and the severity of blister rust infection, however there is some evidence to support the theory that pine trees become more resistant to WPBR over time. Patton (1961) found that four year old white pine seedlings had a lower infection rate compared to year-old seedlings. Furthermore, grafts from 10, 20, 40 and 80 year old trees were infected at progressively lower rates as the age of the graft increased. In the closely related western white pine, Hunt (2005) also found that cankers developed earlier on seedlings than on scions from resistant parent trees (mean age of the parent tree was 49 years). However, though WPBR can infect trees at any age, it is not known if there is an age at which WPBR infection peaks, or at which trees are most effective at preventing infection.

It is difficult to determine if competition is influencing the rate of WPBR infection. More trees were free to grow in resistant plots, and no significant difference in the number of trees infected between control and resistant plots was observed when free to grow status was controlled for. However, only 7 trees in control plots were free to grow and infected by WPBR. This low sample size makes it difficult to make a reliable comparison.

Ribes eradication is a common method of controlling WPBR infection (Van Arsdel 1961). In Quetico, only 2 trees in the control plots and 9 trees in the resistant plots had *ribes* spp. present within a 1.2m radius of the tree. Therefore, it is difficult to determine if the presence of *ribes* spp. influences tree health in these plots. However, the prevalence of WPBR despite low densities of *ribes* spp. is consistent with the ability of WPBR spores to be dispersed long distances on the wind (Natural Resources Canada 2015; Government of Ontario 2016).

Future Research

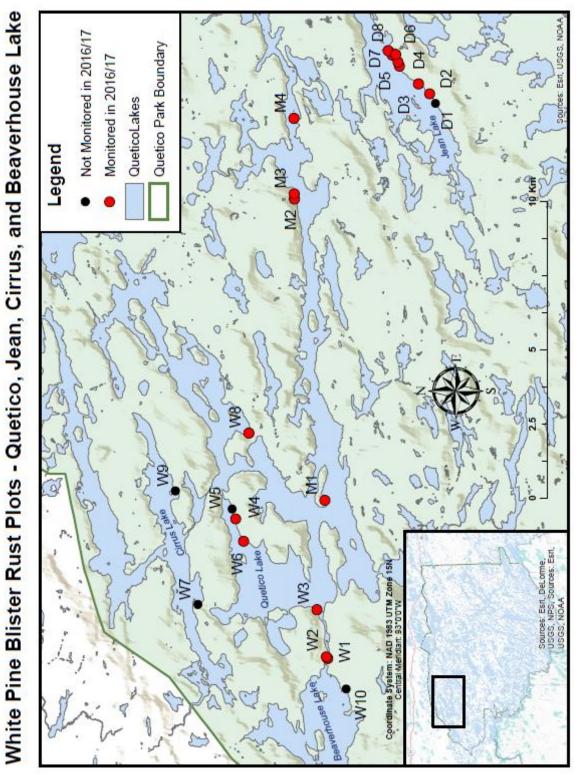
1) Monitor additional control plots

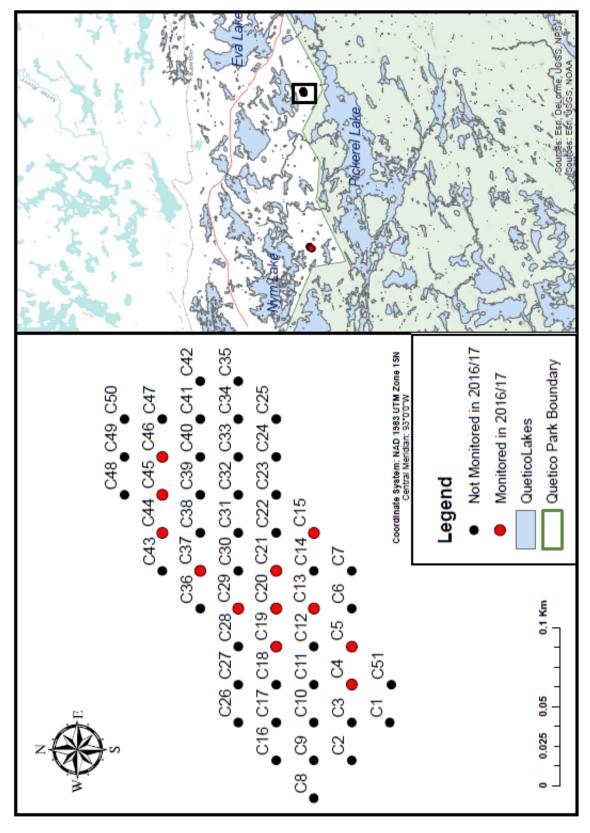
Due to the low sample size of non-resistant trees, it is difficult to draw reliable conclusions from the existing data. Plans are in place to monitor additional control plots during the summer of 2018. If possible, additional control plots should more closely reflect the size structure of the resistant plots.

Acknowledgements

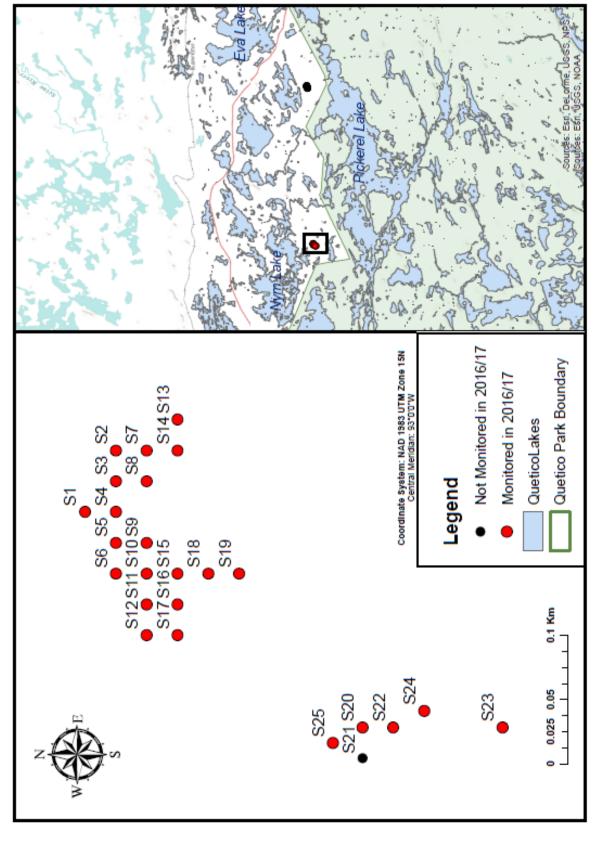
Thanks to the Quetico Foundation Research Crews of 2016: Hannah Koslowsky, Brigitte Champaigne-Klassen, Ty Colvin, and Kiara Gannon and 2017: Peter Tyrie, Ty Colvin, Kristen Elder, and Marla Larson, the Quetico Foundation 2017 Biology Intern Jared Stachiw, the Assistant Resources Management Technicians of 2016: Chantelle Gouliquer, and 2017: Ashley Allan for data collection. Thanks to The Quetico Foundation Executive Director Glenda McLaughlin for hiring and supporting the summer research crews. To Renee Perry (MNRF Area Forester) and Bridget Antze (MNRF Technician) for developing the *White Pine Resistance Survey: Protocol* and overseeing this project. Finally, thank you to Brian Jackson for numerous insightful critiques of this report.

- Allan, A. 2017. Stanton Bay white pine blister rust assessment. *Ontario Ministry of Natural Resources and Forestry Atikokan Area*. pp. 17.
- American Public Gardens Association. 2012. White Pine Blister Rust. USDA Animal and Plant Health Inspection Service and USDA Forest Service. Retrieved from: http://plantheroes.org/white-pineblister-rust
- Champaigne-Klassen, B. 2016. Summary report for Jean Lake white pine blister rust assessment. *Quetico Provincial Park.* pp. 11.
- David, A., Berrang, P., & Pike, C. 2012. White pine blister rust resistance research in Minnesota and Wisconsin.
- Hunt, R.S. 2005. Effect of plant age and length of growing season on the development of blister rust cankers in western white pine. *Canadian Journal of Plant Pathology*. 27: 453 457.
- Government of Ontario. 2016. White pine blister rust. Retrieved from https://www.ontario.ca/page/white-pine-blister-rust
- Heinselman, M. L. 1973. Fire in the virgin forests of the Boundary Waters Canoe Area, Minnesota. *Quaternary Research* 3(3): 329-382.
- Kinloch, B. B. 2003. White pine blister rust in North America: past and prognosis. *Phytopathology*. 93(8): 1044-1047.
- Natural Resources Canada. 2015. White pine blister rust. Trees, insects and diseases of Canada's forests. Retrieved from https://tidcf.nrcan.gc.ca/en/diseases/factsheet/24
- Ontario Parks. 2017. What you'll like Quetico Provincial Park. *Queen's Printer for Ontario*. Retrieved from https://www.ontarioparks.com/park/quetico
- Patton, R.F. 1961. The effect of age upon susceptibility of eastern white pine to infection by *cronartium ribicola*. *Phytopathology*. 51(7): 429 424.
- Perry, R., Antze, B. 2016. White pine resistance survey protocol. *Ontario Ministry of Natural Resources and Forestry Northwest Region.* pp 3.
- Perry, R. 2017, November. Personal Communication. *Ontario Ministry of Natural Resources and Forestry Atikokan Area Forester.*
- Pringle, J. Ontario Ministry of Natural Resources (OMNR). 1989. The Quetico Tall Pine Research Project. John B. Ridley Research Library Quetico Provincial Park.


- Pringle, J. Ontario Ministry of Natural Resources (OMNR). 1990. Tall Pines Project: Jean and Quetico Lakes. John B. Ridley Research Library Quetico Provincial Park.
- Pringle, J. Ontario Ministry of Natural Resources (OMNR). 1991. Tall Pines Project. John B. Ridley Research Library Quetico Provincial Park.
- Pringle, J. Ontario Ministry of Natural Resources (OMNR). 1992. Tall Pines Project. John B. Ridley Research Library Quetico Provincial Park.
- Pringle, J. Ontario Ministry of Natural Resources (OMNR). 1993. Tall Pines Project. John B. Ridley Research Library Quetico Provincial Park.
- Sfilio, L. 2005. White pine and white pine blister rust fungus status in Quetico Provincial Park, Ontario, Canada. *Quetico Provincial Park.* pg. 27.
- Van Arsdel, E. P. 1961. Growing white pine in the lake states to avoid blister rust. *Lake States Forest Experiment Station Forest Service U.S. Department of Agriculture:* No. 92.
- Van Wagner, C. E. 1978. Age-class distribution and the forest fire cycle. *Canadian Journal of Forest Research*. 8: 220-227.



White Pine Blister Rust Plots - Control



White Pine Blister Rust Plots - Stanton Seed Orchard

				# Trees	# Trees Planted Total % Survival		Surveyed in				
Plot	Lake	Easting	Northing	1990	1992	1993	2005	2014	2016	2017	
M1	Quetico	577335	5377885	50		52				Y	
M2	Quetico	587488	5378903	72		79				Y	
M3	Quetico	587660	5378913	35		86				Ŷ	
M4	Quetico	590200	5378926	36		86				Ŷ	
D1	Jean	590714	5374160	50	8	78				•	
D2	Jean	591031	5374354	50	5	82			Y		
D3	Jean	591367	5374732	50	1	90			Ŷ		
D4	Jean	591961	5375368	50	2	90			Ŷ		
D5	Jean	592337	5375611	100	2	95			Ý		
D6	Jean	592099	5375416	25		80			Ý		
D7	Jean	592485	5375745	50		92			Ý		
D7 D8	Jean	592353	5375497	73		96			Y		
W1	Quetico River	572003	5377792	50	160	40	Y	Y	I	Y	
							Y	Y		Y	
W2	Quetico River	572063	5377834	25	154	76	ř				
W3	Quetico	573645	5378141	25		40		Y		Y	
W4	Quetico	577035	5380997	25		72		Y		v	
W5	Quetico	576706	5380883	25		28		Y		Y	
W6	Quetico	575956	5380620	50		56	Y	Y		Y	
W7	Cirrus	573819	5382153	429		95					
W8	Quetico	579593	5380441	155		98	Y			Y	
W9	Cirrus	577650	5382915	6		100					
W10	Beaverhouse	570980	5377166	50		78					
FL	French Lake			5							
QFSO*	Gillnet Lake			192	2300						
S1	Stanton Bay	617157	5391656						Y		
S2	Stanton Bay	617205	5391632						Y		
S3	Stanton Bay	617181	5391632						Y		
S4	Stanton Bay	617157	5391632						Y		
S5	Stanton Bay	617133	5391632						Y		
S6	Stanton Bay	617109	5391632						Y		
S7	Stanton Bay	617205	5391608						Y		
<i>S8</i>	Stanton Bay	617181	5391608						Y		
S9	Stanton Bay	617133	5391608						Y		
S10	Stanton Bay	617109	5391608						Y		
S11	Stanton Bay	617085	5391608						Y		
S12	Stanton Bay	617061	5391608						Y		
S13	Stanton Bay	617229	5391584						Y		
S14	Stanton Bay	617205	5391584						Y		
S 15	, Stanton Bay	617109	5391584						Y		
S16	, Stanton Bay	617085	5391584						Y		
S17	, Stanton Bay	617061	5391584						Y		
S18	Stanton Bay	617109	5391560						Ŷ		
S19	Stanton Bay	617109	5391536						Ŷ		
S20	Stanton Bay	616989	5391440						Ŷ		
S21	Stanton Bay	616965	5391440						•		
S22	Stanton Bay	616989	5391440						Y		
522 523	Stanton Bay	616989	5391410						Ŷ		
525 S24	Stanton Bay	617002	5391351						Y		
524 S25		616977	5391392 5391463						Y Y		
	Stanton Bay								ř		
C1	Control 957	629880	5392022								
C2	Control 957	629856	5392046								
C3	Control 957	629880	5392046								
C4	Control 957	629904	5392046							Y	
C5	Control 957	629928	5392046							Y	
C6	Control 957	629952	5392046								

Appendix 2. White Pine Blister Rust Monitoring History

C7	Control 957	629976	5392046
C8	Control 957	629832	5392070
C9	Control 957	629856	5392070
C10	Control 957	629880	5392070
C11	Control 957	629904	5392070
C12	Control 957	629928	5392070
C13	Control 957	629952	5392070
C14	Control 957	629976	5392070
C15	Control 957	630000	5392070
C16	Control 957	629856	5392094
C17	Control 957	629880	5392094
C18	Control 957	629904	5392094
C19	Control 957	629928	5392094
C20	Control 957	629952	5392094
C20 C21	Control 957	629976	5392094
C21 C22	Control 957	630000	5392094 5392094
C23	Control 957	630024	5392094
C24	Control 957	630048	5392094
C25	Control 957	630072	5392094
C26	Control 957	629880	5392118
C27	Control 957	629904	5392118
C28	Control 957	629928	5392118
C29	Control 957	629952	5392118
C30	Control 957	629976	5392118
C31	Control 957	630000	5392118
C32	Control 957	630024	5392118
C33	Control 957	630048	5392118
C34	Control 957	630072	5392118
C35	Control 957	630096	5392118
C36	Control 957	629952	5392142
C37	Control 957	629976	5392142
C38	Control 957	630000	5392142
C39	Control 957	630024	5392142
C40	Control 957	630048	5392142
C41	Control 957	630072	5392142
C42	Control 957	630096	5392142
C42	Control 957	629976	5392142
C43 C44	Control 957	630000	5392100
C44 C45	Control 957	630024	5392100
C45 C46	Control 957	630024	5392166
C47	Control 957	630072	5392166
C48	Control 957	630024	5392190
C49	Control 957	630048	5392190
C50	Control 957	630072	5392190
C51	Control 957	629904	5392021

* Quetico Foundation Seed Orchard (also referred to as Gillnet Lake). The Stanton Bay Plantation plots were established here.

			Count of Vigour			Count of Severity				
.	Number of	Average	1		-				-	
Plot	Trees	Diameter (cm)	1	2	3	1	2	3	4	
C4	45	4.5	1	9	35		3 2	2	40	
C5	50	3.5	1	6	43	4	2	4	44	
C13	15	5.1	1	4	14	1	4	2	14	
C15	11	4.5	1	4	6	1	1	2	7	
C19	32	3.4	1	3	28			•	32	
C20	44	2.3	4	7	33		1	2	41	
C21	34	6.1	_	5	29		1	1	32	
C29	39	5.5	5	8	26	1		6	32	
C37	19	4.9	1	10	8	1		3	15	
C44	11	6.3	1	5	5	1		3	7	
C45	8	8.3	1	3	4	_		2	6	
C46	9	5.9	1	1	7	1			8	
S1	26	164.0	4	10	51		1		25	
S2	17	71.4	1	8	36		1		16	
S3	15	144.5	3	10	21		_		15	
S4	28	15.9		16	60		3		25	
S5	28	82.6	5	12	51		2	4	22	
S6	19	115.2	1	8	42	1		2	16	
S7	36	14.7	2	4	96				36	
S8	16	13.8	3	10	24		1	2	13	
S9	19	14.4	2		51				19	
S10	20	12.0		4	54				20	
S11	18	12.5	1	8	39			2	16	
S12	30	12.7	3	12	63	2	1	1	26	
S13	23	13.5		18	42		2	1	20	
S14	24	88.0	5	12	45	2		3	21	
S15	15	15.5	4		33				15	
S16	26	12.5		16	54		1	1	24	
S17	38	63.7	2	14	87			6	32	
S18	35	15.1	1	26	63			1	34	
S19	43	13.0	4	10	102				43	
S20	26	10.2	2	6	63			1	25	
S22	35	13.5	3	6	87				35	
S23	20	11.2	2	10	39				20	
S24	40	13.9		18	93		2	3	35	
S25	16	11.3	1		45				16	
D2	24	13.4	7	10	36	1	2	1	20	
D3	27	8.7	2		75				27	
D4	25	12.6	1	12	54			3	22	
D5	20	11.5		6	51		1	1	18	
D6	12	12.2		10	21		1	1	10	
D7	35	9.6	1	4	96	1	2		32	
D8	25	12.4	1	24	36				25	
M1	77	2.7	3	90	87		3	1	73	
M2	10	14.5	1	10	12	1	1	1	7	
M3	21	7.9		16	39		1		20	
M4	6	0.8		6	9				6	
W1	17	24.8		4	45			1	16	
W2	6	11.1	1	10		1		1	4	
W3	6	11.5		10	3	-		-	6	
W5	10	1.6		4	24				10	
W6	72	1.7		42	153		1		71	
W8	26	18.6	8	22	21	7	3	3	13	

Appendix 3. White Pine Blister Rust Monitoring Data Summary

